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Abstract The mobile multimedia applications have re-
cently generated much interest in wireless ad hoc networks
with supporting the quality-of-service (QoS) communica-
tions. The QoS metric considered in this work is the reserved
bandwidth, i.e., the time slot reservation. We approach this
problem by assuming a common channel shared by all hosts
under a TDMA (Time Division Multiple Access) channel
model. In this paper, we propose a new TDMA-based QoS
multicast routing protocol, namely hexagonal-tree QoS mul-
ticast protocol, for a wireless mobile ad hoc network. Exist-
ing QoS routing solutions have addressed this problem by
assuming a stronger multi-antenna model or a less-strong
CDMA-over-TDMA channel model. While more practical
and less costly, using a TDMA model needs to face the chal-
lenge of radio interference problems. The simpler TDMA
model offers the power-saving nature. In this paper, we pro-
pose a new multicast tree structure, namely a hexagonal-
tree, to serve as the QoS multicasting tree, where the MAC

This work was supported by grants NSC-92-2213-E-194-022 and
NSC-94-2213-E-194-030, from the National Science Council of the
ROC.

Y.-S. Chen (�)
Department of Computer Science and Information Engineering,
National Taipei University, Taipei County, Taiwan, ROC
e-mail: yschen@csie.ntpu.edu.tw

T.-H. Lin
Department of Computer Science and Information Engineering,
National Chin-Yi University of Technology, Taichung County,
Taiwan, ROC
e-mail: duke@ncut.edu.tw

Y.-W. Lin
Department of Computer Science and Information Engineering,
National Chung Cheng University, Chiayi, Taiwan, ROC
e-mail: jyneda@giam.dynu.com

sub-layer adopts the TDMA channel model. In this work,
both the hidden-terminal and exposed-terminal problems
are taken into consideration to possibly exploit the time-
slot reuse capability. The hexagonal-based scheme offers a
higher success rate for constructing the QoS multicast tree
due to the use of the hexagonal-tree. A hexagonal-tree is a
tree whose sub-path is a hexagonal-path. A hexagonal-path
is a special two-path structure. This greatly improves the
success rate by means of multi-path routing. Performance
analysis results are discussed to demonstrate the achieve-
ment of efficient QoS multicasting.

Keywords QoS routing · Mobile ad hoc network
(MANET) · Multi-path · Multicast · TDMA · Wireless
communication

1 Introduction

A mobile ad hoc network (MANET) [4, 22] consists of wire-
less hosts that communicate with each other in the absence
of a fixed network infrastructure. Due to factors such as ra-
dio power limitations, power consumption, and channel uti-
lization, a mobile host might not be able to communicate
directly with other hosts via a single-hop communication.
In a MANET, host mobility can cause unpredictable topo-
logical variability; therefore the design of a MANET QoS
routing protocol is more complicated because it requires
strong fault-tolerant capability. Extensive research efforts
have been devoted to the design of MANET routing pro-
tocols [8–10, 22], and all address the following issues: dis-
covering a route from a source node to a destination, main-
taining a route while it is being used, and delivering data
packets to the destination host. However, these protocols,
when searching for a route to the destination, are always
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concerned with shortest-path routing and the availability of
multiple routes in the MANET’s dynamically changing en-
vironment. Connections with quality-of-service (QoS) re-
quirements, such as multimedia with delay and bandwidth
constraints, are less frequently addressed, especially when
designing QoS multicast protocols for MANETs.

Recently, some researchers intensively studied the QoS
issue in MANETs [5–7, 11–13, 15–19]. Initially, a quite
ideal model assumes that the bandwidth of a link can be
determined independently of its neighboring links [7]. This
strong assumption may be realized by a costly multi-antenna
model such that a host can send/receive using different
antennas independently and simultaneously. Under such a
model, a ticket-based QoS routing protocol was proposed
in [7]. Recently, a less-strong CDMA-over-TDMA channel
model was assumed in [15, 16] for developing QoS routing
protocols in a MANET, where the use of a time slot on a
link is only dependent on the status of its one-hop neighbor-
ing links. Observe that a code assignment protocol should be
supported (this can be regarded as an independent problem,
which can be found in [15, 16]). Based on such a model,
Lin calculated the end-to-end path bandwidth to develop a
DSDV-based QoS routing protocol [16] and an on-demand
QoS routing protocol [15] for MANETs. More recently, one
simpler TDMA model was further considered in [14] for
developing a uni-path QoS routing protocol in a MANET.
Their approaches show how to allocate time slots on each
link of a path such that no two adjacent links share a com-
mon time slot.

This paper mainly presents a new TDMA-based QoS
multicast routing protocol, namely the hexagonal-tree QoS
multicast protocol, for a wireless mobile ad hoc network.
Existing QoS routing solutions have addressed this prob-
lem by assuming a stronger multi-antenna model or a less-
strong CDMA-over-TDMA channel model. This study at-
tempts to build a new multicast tree structure, namely a
hexagonal-tree, to serve as the QoS multicast tree, where the
MAC sub-layer adopts the TDMA channel model [1]. In this
work, both the hidden-terminal and exposed-terminal prob-
lems are taken into consideration in order to possibly exploit
the time-slot reuse capability. This hexagonal-based scheme
offers a higher success rate for constructing a QoS multicast
tree due to use of the hexagonal-tree. A hexagonal-tree is a
tree whose sub-path is a hexagonal-path. A hexagonal-path
is a special two-path structure. This greatly improves the
success rate by means of multi-path routing. Performance
analysis results are discussed to demonstrate achievement
of efficient QoS multicasting.

The rest of the paper is organized as follows. Section 2
presents basic ideas and challenges. Our protocol is devel-
oped in Sect. 3, and experimental results are discussed in
Sect. 4. Section 5 concludes this paper.

2 Basic ideas and challenges

Existing TDMA-based routing protocols ignore the trans-
mission activities of individual mobile hosts. Recall the
hidden-terminal and exposed-terminal problems, which are
well-known problems in the literature of radio-based com-
munication. Consider the scenario in Fig. 1, where the band-
width requirement is two time slots. Fig. 1(a) shows the
hidden-terminal problem in which if A sends data to B on
slots 1 and 2, then D is not allowed to send data to F on slots
1 and 2. On the contrary, Fig. 1(b) illustrates the exposed-
terminal problem in which if A sends data to B on slots 1
and 2, then C is allowed to send data to E on slots 1 and 2.
Observe that if the QoS routing protocol only considers the
hidden-terminal problem, then no three adjacent links are al-
lowed to share the same free time-slots. This limitation can
be overcome if the exposed-terminal problem is also taken
into consideration, such that it is possible that no two adja-
cent links share same time slots. This observation motivated
our design to take the hidden- and exposed-terminal prob-
lems into consideration. The major study is to design of a
QoS multi-path multicast routing protocol under the above
considerations.

This work aims to develop a new multicast tree by
exploiting the time-slot reuse capability. Before formally
defining our multicast-tree structure, a network model is as-
sumed. The MAC sub-layer in our model is implemented by
using a TDMA channel model, for which each frame is di-
vided into a control and a data phase, and each data phase
of a frame is split into k time slots. Some terms are defined.
Let (h1, h2, . . . , hk) represent a path from nodes h1 to hk .
A node, B , is said to be a branch node if more than one dis-
joint paths exist from a three-hop neighboring node, B ′, so
that nodes B and B ′ are called a pair of branch nodes.

In this investigation, all nodes are assumed to have the
fixed reception and carrier-sense ranges. We introduce the
terms hexagonal-block, hexagonal-twin, hexagonal-path,
hexagonal-branch, and hexagonal-tree for constructing our
QoS multicast routing protocol.

Definition 1 (Hexagonal-block) Given a pair of two branch
nodes, B and B ′, there are two disjoint three-hop paths
(B,X,Y,B ′) and (B,X′, Y ′,B ′) between these two branch
nodes, where X and X′ are not one-hop neighbors and Y

and Y ′ are not one-hop neighbors. Paths (B,X,Y,B ′) and

(B,X′, Y ′,B ′) form a hexagonal-block, and let
[
B

X
X′

Y
Y ′ B ′

]

denote a hexagonal-block between B and B ′.

For instance, a hexagonal-block
[
B

X
X′

Y
Y ′ B ′

]
is shown in

Fig. 2; there are two disjoint three-hop paths (B,X,Y,B ′)
and (B,X′, Y ′,B ′) between a pair of branch nodes B and
B ′. In general, nodes X and X′ can be a pair of neighbors,
and nodes Y and Y ′ can be a pair of neighbors. However, the
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Fig. 1 Example of bandwidth
calculations both considering
the hidden-terminal and
exposed-terminal problems

Fig. 2 Example of a hexagonal-block

hexagonal-block gives a strong condition that nodes X and
X′ cannot be one-hop neighbors and nodes Y and Y ′ cannot
be one-hop neighbors, as illustrated in Fig. 2. This condition
is important for the time-slot reservation scheme in order to
exploit the time-slot reuse capability.

Using the hexagonal-block allows us to split the original
data packet into two equal sub-packets, such that one sub-
packet goes through (B,X,Y,B ′) and the other sub-packet
goes through (B,X′, Y ′,B ′). The hexagonal-twin is now
formally defined as follows. This hexagonal-twin is a funda-
mental component for constructing the hexagonal-path and
hexagonal-tree structure.

Definition 2 (Hexagonal-twin) Given two hexagonal-blocks,

Z =
[
A

N1
N2

N3
N4

B
]

and Z′ =
[

N3
P1
B

P2
P3

C

]
,

let

Z
Z′ =

⎡
⎢⎣

P1 P2
N1 N3 C

A B P3
N2 N4

⎤
⎥⎦

denote a hexagonal-twin if a link (N3, B) is shared by Z

and Z′.

For instance, a hexagonal-twin

Z
Z′ =

⎡
⎢⎣

F H
B D J

A G I
C E

⎤
⎥⎦

is given in Fig. 3(c); there are two disjoint paths (A,B,D,F,

H,J ) and (A,C,E,G, I, J ) between nodes A and J. Simi-
larly, using the hexagonal-twin, one sub-packet travels along
(A,B,D,F,H,J ) and the other sub-packet travels along
(A,C,E,G, I, J ).

Definition 3 (Hexagonal-path) A path is denoted a hexago-
nal-path if one or more hexagonal-blocks or hexagonal-
twins exist in the path.

During QoS route discovery, if a uni-path exists which
satisfies a given QoS requirement, a uni-path will be iden-
tified. However, if a QoS uni-path does not exist, then the
hexagonal-block and hexagonal-twin are used to offer a
multi-path routing scheme, which aims to increase the suc-
cess rate of identifying a QoS route. For instance as shown in
Fig. 3(a), a uni-path with two time slots is constructed. If we
cannot find a uni-path with two time slots, then a hexagonal-
block with two time slots or a hexagonal-twin with two time
slots is possibly identified, as shown in Figs. 3(b) and 3(c).
Further, Fig. 4(a) shows a hexagonal-path with two non-
adjacent hexagonal-blocks connected by a uni-path. Fig-
ure 4(b) illustrates a hexagonal-path constructed by two ad-
jacent hexagonal-blocks. Figure 4(c) displays a hexagonal-
path constructed by a hexagonal-twin. Note that all cases
are instances of hexagonal-paths. We introduce the time-slot
reuse capability of a hexagonal-block and hexagonal-twin as
follows.

Lemma 1 A time slot t can be used by a host X to send
data to another host Y without causing a collision if all of
the following conditions are satisfied:

1. Slot t is not yet scheduled to send or receive data in either
X or Y.
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Fig. 3 Example of (a) a
uni-path, (b) a hexagonal-block,
and (c) a hexagonal-twin

Fig. 4 Examples of
hexagonal-paths

2. For any one-hop neighbor Z of X, slot t is not sched-
uled to receive data in Z. Slot t can be scheduled (or
reused) to send data in Z, but cannot send data to any of
the other one-hop neighbors of X (which conflicts with
condition 1).

3. For any one-hop neighbor Z of Y , slot t is not scheduled
to send data in Z. Slot t can be scheduled (or reused)
to receive data in Z, but cannot receive data from any of
the other one-hop neighbors of Y (which conflicts with
condition 1).

Given the hexagonal-twin
⎡
⎢⎢⎣

G H

B D J

A F I

C E

⎤
⎥⎥⎦

as illustrated Fig. 5, the time-slot reuse capability of all links

of a hexagonal-twin are listed.

1. Time slot t scheduled in
−→
AB can be reused in

−→
CE,

−−→
GH,

and
−→
IJ (see Fig. 5(a)).

2. Time slot t scheduled in
−→
BD can be reused in

−→
AC and−→

JH (see Fig. 5(b)).

3. Time slot t scheduled in
−→
DG can be reused in

−→
FI

(see Fig. 5(c)).

4. Time slot t scheduled in
−→
EF can be reused in

−→
HJ

(see Fig. 5(d)).

To prepare for the construction of a hexagonal-tree struc-

ture, a hexagonal-branch is formally defined based on the

hexagonal-twin structure.
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Definition 4 (Hexagonal-branch) Given three hexagonal-
blocks,

Z =
[
A

N1
N2

N3
N4

B

]
, Z′ =

[
N3

P1
B

P2
P3

C

]
,

and

Z′′ =
[
N4

B

P4

P3
P5

D

]
,

Fig. 5 Time-slot reuse capability of a hexagonal-twin

let

Z
Z′
Z′′ =

⎡
⎢⎢⎢⎣

P1 P2
N1 N3 C

A B P3
N2 N4 D

P4 P5

⎤
⎥⎥⎥⎦

denote a hexagonal-branch which is constructed by Z, Z′,
and Z′′, for which the three links of (N3, B), (N4, B) and
(B,P3) are shared by Z, Z′, and Z′′.

Given the hexagonal-branch

⎡
⎢⎢⎢⎣

G H
B D J

A F I
C E M

K L

⎤
⎥⎥⎥⎦

illustrated in Fig. 6, the time-slot reuse capability of all links
of a hexagonal-branch are listed.

1. Time slot t scheduled in
−→
AB can be reused in

−→
CE,

−−→
GH ,−→

IJ and
−→
LK (see Fig. 6(a), which is the same as Fig. 5(a)).

2. Time slot t scheduled in
−→
AC can be reused in

−→
BD,

−→
JH ,−→

IM and
−→
KL (see Fig. 6(b), which is the same as

Fig. 5(b)).
3. Time slot t scheduled in

−→
DG can be reused in

−→
FI and−→

EK (see Fig. 6(c), which is the same as Fig. 5(c)).
4. Time slot t scheduled in

−→
HJ can be reused in

−→
FI ,

−−→
LM ,−→

DB and
−→
EC (see Fig. 6(d), which differs from Fig. 5(d)).

Fig. 6 Time-slot reuse
capability of a hexagonal-branch



6 Y.-S. Chen et al.

Fig. 7 Four cases of
hexagonal-branches

As shown in Fig. 7(d), the hexagonal-branch

Z
Z′
Z′′ =

⎡
⎢⎢⎢⎢⎣

G H

B D J

A F I

C E M

K L

⎤
⎥⎥⎥⎥⎦

is constructed by two hexagonal-twins

Z
Z′ =

⎡
⎢⎢⎣

G H

B D J

A F I

C E

⎤
⎥⎥⎦

and

Z
Z′′ =

⎡
⎢⎢⎣

B D

A F I

C E M

K L

⎤
⎥⎥⎦ .

Observe that an original packet is split into two sub-packets.

From host A, the two sub-packets can send data to host J

by paths (A,B,D,G,H,J ) and (A,C,E,F, I, J ). Simi-

larly, the two sub-packets can send data to host M by paths

(A,B,D,F, I,M) and (A,C,E,K,L,M). This achieves

the purpose of delivering the original message to two distinct

hosts. This is the fundamental operation of the tree structure.
The hexagonal-branch

Z
Z′
Z′′ =

⎡
⎢⎢⎢⎢⎣

F H

B D J

A G I

C E M

K L

⎤
⎥⎥⎥⎥⎦

is given in Fig. 7(d), where

Z
Z′ =

⎡
⎢⎢⎣

F H

B D J

A G I

C E

⎤
⎥⎥⎦

and

Z
Z′′ =

⎡
⎢⎢⎣

B D

A G I

C E M

K L

⎤
⎥⎥⎦ .

Observe that an original packet is split into two sub-packets.
From host A, the two sub-packets can traverse to host J

by paths (A,B,D,F,H,J ) and (A,C,E,G, I, J ). Simi-
larly, the two sub-packet can traverse to host M by paths
(A,B,D,G, I,M) and (A,C,E,K,L,M). This achieves
the purpose of delivering the original message to two dis-
tinct hosts. This is the fundamental branch operation of a
tree structure.

The purpose of the tree branch is to send the same
data packet to two distinct nodes while satisfying the given
bandwidth requirement. Each node can continually build a
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Fig. 8 Example of a
hexagonal-tree

sub-tree to cover all possible destination nodes. All possi-
ble cases of tree branches are illustrated in Fig. 7, and a
tree branch occurs between node A and nodes J and M .
Figure 7(a) shows that node A initially sends a packet to
nodes J and M using three uni-paths

−→
AG,

−→
GJ, and

−−→
GM ,

with two time-slots. If this case fails, three other cases are
then constructed to improve the success rate of constructing
a QoS multicast tree. Figure 7(b) illustrates a hexagonal-

block
[
A

B
C

D
E

G

]
, and two uni-paths

−→
GJ and

−−→
GM us-

ing two time-slots. Figure 7(c) displays a uni-path
−→
AG

and two hexagonal-blocks which uses two time-slots. Fig-
ure 7(c) shows a hexagonal-branch which uses two time-
slots. In addition, Fig. 7(d) shows the worst case of con-
structing a hexagonal-branch. Observe that, there is one path
which requires the allocation of the total bandwidth de-
mand (time-slots) instead of the halves used on other links.
An instance is shown in link

−→
FI . It still can reduces the

time-slot requirement in links
−→
IJ and

−→
IM. This condition

only occurs in three hexagonal-blocks are simultaneously
used for a hexagonal-branch. With the hexagonal-path and
hexagonal-branch, the hexagonal-tree is formally defined as
follows.

Definition 5 (Hexagonal-tree) A tree is said to be a hex-
agonal-tree if one or more hexagonal-path exist in the tree.

A possible hexagonal-tree, from source host S to desti-
nations E and F, with uni-paths is illustrated in Fig. 8; note
that a hexagonal-branch appears between node B and nodes
C and D. Observe that, the uni-path which satisfies the QoS
requirement is identified with a higher priority during con-
struction of the multicast tree. In the following, the construc-
tion of a hexagonal-tree is presented.

3 Hexagonal-tree TDMA-based QoS multicast routing
protocol

We first give an overview of our proposed protocol, a hexago-
nal-tree TDMA-based QoS multicast protocol, in a MANET.

The proposed protocol mainly constructs a hexagonal-tree
to perform the on-demand QoS multicast routing opera-
tion. The designed protocol is achieved by the hexagonal-
branch/twin identification and hexagonal-tree construction
phases. The hexagonal-branch/twin identification phase
identifies the hexagonal-branch/twin in a MANET. The
hexagonal-tree construction phase constructs the hexagonal-
tree by merging hexagonal-paths from a source to all desti-
nations.

3.1 Phase 1: hexagonal-branch/twin identification

3.1.1 Hexagonal-branch identification

This phase searches for a hexagonal-branch under a given
bandwidth requirement. A hexagonal-branch,

⎡
⎢⎢⎢⎢⎣

G H

B D J

A F I

C E M

K L

⎤
⎥⎥⎥⎥⎦

,

is constructed by the three hexagonal-blocks of

[
A

B

C

D

E
F

]
,

[
D

G

F

H

I
J

]
,

and

[
E

F

K

I

L
M

]
.

Node F contains the following data structure if we attempt
to successfully identify a hexagonal-branch. Observe that
each node maintains local information on all one/two/three-
hop neighboring nodes:

• nodex . Let nodex ∈ {A,B,C,D,E,F,G,H, I, J,K,

L,M} and all one- or two-hop neighbors of {A,B,C,D,

E,F,G,H, I, J,K,L,M}.
• A list of sending activities of nodex . Node nodex

records on which time slots it has sending activities. If
[y, l1, . . . , lk] denotes nodex sending data to node y on
time slots {l1, . . . , lk}, then a list of [y, l1, . . . , lk] is main-
tained.
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Fig. 9 Time-slot reservation for
a hexagonal-branch

• A list of receiving activities of nodex . Node nodex

records from which time slots it has receiving activities.
If [y, l1, . . . , lk] denotes nodex receiving data from node
y on time slots {l1, . . . , lk}, then a list of [y, l1, . . . , lk] is
maintained.

Observe that this section only discusses how to success-
fully identify a hexagonal-branch to exploit the time-slot
reuse capability. Observe that all records are collected into
node F , which indicates that the time slot reservation of
paths from A to J and A to M are determined by node F .
This is the main overhead of our proposed protocol. From
the simulation results in Sect. 4, the improved success rate
of identifying a QoS on-demand multicast tree can success-
fully cover this extra overhead. Let Free_time_slot (

−→
αβ) de-

note time slots which can be used to send data from α to β ,
Used_time_slot (

−→
αβ) denote time slots which have been

used to send data from α to β. For instance as illustrated
in Fig. 9(a), Used_time_slot(

−→
LK) = {1,2}.

Given a hexagonal-branch,

⎡
⎢⎢⎢⎢⎣

G H

B D J

A F I

C E M

K L

⎤
⎥⎥⎥⎥⎦

,

as shown in Fig. 9(a),
−→
AB and

−→
AC cannot share the same

time slots, since our protocol is a multi-path (two-path).
Based on Fig. 6(a), we do know that Free_time_slot (

−→
AB)

can be the same as Free_time_slot (
−→
CE), Free_time_slot

(
−−→
GH ), Free_time_slot (

−→
IJ ), and Free_time_slot (

−→
LK),

but time slots scheduled in
−→
AB cannot be used in

−→
FD.

Similarly, from Fig. 6(b), Free_time_slot (
−→
AC) can be
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Fig. 10 Time slot reservation for a hexagonal-twin

the same as Free_time_slot (
−→
BD), Free_time_slot (

−→
IM),

Free_time_slot (
−→
KL), and Free_time_slot (

−→
JH ), but time

slots scheduled in
−→
AC cannot be used in

−→
FE, etc.

With a bandwidth requirement of γ , we perform the fol-
lowing reservation operations: (1) We try to allocate γ /2
time slots to

−→
AB,

−→
CE,

−−→
GH , and

−→
IJ (see Fig. 6(a)). (2) We

then try to allocate γ /2 time slots to
−→
AC,

−→
BD,

−→
IM, and

−→
KL

(see Fig. 6(b)). (3) We then attempt to allocate γ /2 time
slots to

−→
HJ,

−→
FI, and

−−→
LM (see Fig. 6(c)). (4) We then at-

tempt to allocate γ /2 time slots to
−→
DG,

−→
FI, and

−→
EK (see

Fig. 6(d)). (5) We finally try to allocate γ /2 time slots to−→
DF and

−→
EF. If any one of these allocations fails, then the

time slot reservation for a hexagonal-branch fails. Assuming
that the bandwidth requirement is γ , the formal reservation
procedure is given:

A1. Repeatedly reserve γ /2 − α identical time slots and α

distinct time slots on
−→
AB,

−→
CE,

−−→
GH , and

−→
IJ , for α = 0

to γ /2, until the reservation is successful, and update
the possible nodes’ records of sending and receiving
activities. Otherwise, if the reservation fails, then the

reservation for a hexagonal-branch fails, and exit the
procedure (see Fig. 6(a)).

A2. Repeatedly reserve γ /2 − α identical time slots and α

distinct time slots on
−→
AC,

−→
BD,

−→
IM , and

−→
KL, for α = 0

to γ /2, until the reservation is successful, and update
the possible nodes’ records of sending and receiving
activities. Otherwise, if the reservation fails, then the
reservation for a hexagonal-branch fails, and exit the
procedure (see Fig. 6(b)).

A3. Repeatedly reserve γ /2 − α identical time slots and α

distinct time slots on
−→
DG,

−→
FI , and

−→
EK , for α = 0 to

γ /2, until the reservation is successful, and update the
possible nodes’ records of sending and receiving activ-
ities. Otherwise, if the reservation fails, then the reser-
vation for a hexagonal-branch fails, and exit the proce-
dure (see Fig. 6(c)).

A4. Repeatedly reserve γ /2 − α identical time slots and α

distinct time slots on
−→
HJ ,

−→
FI , and

−−→
LM , for α = 0 to

γ /2, until the reservation is successful, and update the
possible nodes’ records of sending and receiving activ-
ities. Otherwise, if the reservation fails, then the reser-
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Fig. 11 Merging steps of the hexagonal-tree

vation for a hexagonal-branch fails, and exit the proce-
dure (see Fig. 6(d)).

A5. Repeatedly reserve γ /2 − α identical time slots and α

distinct time slots on
−→
DF and

−→
EF , for α = 0 to γ /2,

until the reservation is successful, and update the pos-
sible nodes’ records of sending and receiving activities.
Otherwise, if the reservation fails, then the reservation
for a hexagonal-branch fails, and exit the procedure.

For instance as shown in Fig. 9(a), let Used_time_
slot(

−→
JH) = {3,4} and Used_time_slot(

−→
LK) = {1,2} before

constructing the hexagonal-branch. Let bandwidth require-
ment γ be four slots. Figure 9(b) shows that slots {1,2} are
successfully allocated to

−→
AB,

−→
CE,

−−→
GH , and

−→
IJ for step A1.

Figure 9(c) shows that slots {3,4} are successfully allocated
to

−→
AC,

−→
BD,

−→
IM , and

−→
KL for step A2. Figure 9(d) shows

that slots {5,6} are successfully allocated to
−→
DG,

−→
FI , and−→

EK for step A3. Figure 9(e) illustrates that slots {7,8} are
successfully allocated to

−→
HJ ,

−→
FI , and

−−→
LM for step A4.

Figure 9(f) illustrates that slots {9,10} and {11,12} are re-
spectively allocated to

−→
DF and

−→
EF for step A5. Finally,

a hexagonal-branch with four time slots is successfully con-
structed.

3.1.2 Hexagonal-twin construction

This phase searches for a hexagonal-twin if the given
bandwidth requirement is γ . A hexagonal-twin, Z

Z′
or

Z
Z′′ , is constructed from a hexagonal-branch, Z

Z′
Z′′ , with-

out the hexagonal-block Z′ or Z′′. The operation is simi-
lar to the identification of the hexagonal-branch. We omit
the details herein. For instance as shown in Fig. 10(a),
let Used_time_slot(

−→
JH) = {3,4} before constructing the

hexagonal-twin. Let the bandwidth requirement γ be four
slots. Figure 10(b) shows that slots {1,2} are successfully
allocated to

−→
AB,

−→
CE,

−−→
GH , and

−→
IJ (the same as step A1,

and see Fig. 5(a)). Figure 10(c) shows that slots {3,4} are
successfully allocated to

−→
AC and

−→
BD (the same as step A2,

and see Fig. 5(b)). Figure 10(d) shows that slots {5,6} are

successfully allocated to
−→
DG and

−→
FI (the same as step A3,

and see Fig. 5(c)). Figure 10(e) illustrates that slots {7,8}
are successfully allocated to

−→
EF and

−→
HJ (see Fig. 5(d)).

Finally, a hexagonal-twin with four time slots is success-
fully constructed.

3.2 Phase 2: hexagonal-tree structure

The hexagonal-tree construction phase is divided into three
operations:

1. The hexagonal-path discovery operation. Based on the
identified hexagonal-branches and hexagonal-twins, many
hexagonal-paths from a source to a given set of destina-
tions are constructed (see Fig. 11(a)).

2. The hexagonal-path reply operation. The destination re-
ceives the route-request packet from a source, and replies
with a route-reply packet to the source (see Fig. 11(b)).

3. The hexagonal-tree construction operation. Multiple
hexagonal-paths are received from all destinations, and
the hexagonal-tree is finally established at the source (see
Fig. 11(c)). Finally, the source sends a data packet ac-
cording to the determined hexagonal-tree as shown in
Fig. 11(d).

3.2.1 The hexagonal-path discovery operation

After constructing hexagonal-branches and hexagonal-twins,
we now describe how to construct the hexagonal-path. Let
[α1, α2, α3, . . . , αi](b) denote a hexagonal-path, where αi is

a uni-path
−−→
BiB

′
i , a hexagonal-block

[
Bi

Xi

X′
i

Yi

Y ′
i

B ′
i

]
, or

⎡
⎢⎢⎣

X̂i Ŷi

Xi Yi B ′
i

Bi X̂′
i Ŷ ′

i

X′
i Y ′

i

⎤
⎥⎥⎦

or

⎡
⎢⎢⎣

Xi Yi

Bi X̂i Ŷi

X′
i Y ′

i B ′
i

X̂′
i Ŷ ′

i

⎤
⎥⎥⎦ ,
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Fig. 12 Hexagonal-tree
discovery

where b represents the hexagonal-path bandwidth. The
hexagonal-path discovery algorithm is given:

B1. The source node Bi=1 or node Bi>1 floods a hexagonal-
path request packet into a MANET to check if there is
a uni-path αi from node Bi which satisfies the required

bandwidth b, then a hexagonal sub-path αi = −−→
BiB

′
i is

identified, where i ≥ 1.

B2. If no uni-path exists, then node Bi further checks to
see if one or more hexagonal-block exist from node
Bi . If a hexagonal-block exists which satisfies the re-
quired bandwidth b, then a hexagonal sub-path αi =[
Bi

Xi

X′
i

Yi

Y ′
i

B ′
i

]
is constructed.

B3. If no hexagonal-block exists, then node Bi further
checks to see if one or more hexagonal-branches ex-
ist from node Bi . If a hexagonal-branch exists which
satisfies the required bandwidth b, then

αi =

⎡
⎢⎢⎣

X̂i Ŷi

Xi Yi B ′
i

Bi X̂′
i Ŷ ′

i

X′
i Y ′

i

⎤
⎥⎥⎦

or

⎡
⎢⎢⎣

Xi Yi

Bi X̂i Ŷi

X′
i Y ′

i B ′
i

X̂′
i Ŷ ′

i

⎤
⎥⎥⎦

is constructed.
B4. If step B3 fails, then the searching operation of a

hexagonal-path is stopped and exit the procedure. If
B ′

i is not the destination node, then add hexagonal sub-
path αi into the current hexagonal-path [α1, α2, α3, . . . ,

αi−1](b) and let Bi+1 = B ′
i , node Bi+1 recursively per-

forms steps B1, B2, and B3 until a hexagonal-path
[α1, α2, α3, . . . , αk](b) is identified, where B ′

k is the
destination node.

For instance, two hexagonal-paths from source S to two
different destination nodes D1 and D2 are given in Fig. 12.

3.2.2 The hexagonal-path reply operation

Each destination node replies to all possible hexagonal-
paths [αi,αi−1, αi−2, . . . , α1] to the source node. For in-
stance, some hexagonal-paths reply from destination nodes
D1 and D2 to source S, as illustrated in Fig. 13. Many
hexagonal-paths will be collected at the source node, and
then a constructing hexagonal-tree operation is eventually
performed at the source node as follows.

3.2.3 The hexagonal-tree construction operation

This study mainly constructs a hexagonal tree which is mod-
ified from the spiral-fat-tree on-demand multicast (SOM)
protocol [8]. Observe that, the construction of the mul-
ticast tree can use the results of [2, 6, 20–22]. In this
work, all spiral-paths of a spiral-fat-tree [8] are replaced by
hexagonal-paths for the purpose of providing the QoS mul-
ticast protocol.

Given that two hexagonal-paths, [α1, α2, αp,αp+1,

. . . , αk](b), and [α1, α2, αp,α′
p+1, . . . , α

′
k](b), have the

same hexagonal sub-path [α1, α2, . . . , αp](b), we denote
∩([α1, α2, αp,αp+1, . . . , αk](b), [α1, α2, αp,α′

p+1, . . . , α
′
k]

(b)) = [α1, α2, . . . , αp](b). Further, let [α1, α2, . . . , αp](b, s)

denote s hexagonal-paths with the same [α1, α2, . . . , αp](b).

We also denote |[α1, α2, . . . , αp](b)| = p to be the shared
hexagonal-path length. Consider s and s′ hexagonal-paths
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Fig. 13 Hexagonal-tree reply

from all reply hexagonal-paths, we have the merging crite-
rion to construct the hexagonal-tree according to values of
p, s, and b:

C1 If the s reply hexagonal-paths have maximum values of
p, s, and b, then these s hexagonal-paths are merged
together with the highest priority.

C2 If there are s and s′ reply hexagonal-paths with the
same values of p and s, then s hexagonal-paths with
the greater value of b are merged together.

C3 If there are s and s′ reply hexagonal-paths with the
same values of b and s, then s hexagonal-paths with the
greater value of p are merged together.

C4 If there are s and s′ reply hexagonal-paths with the
same values of b and p, then s hexagonal-paths with
the greater value of s are merged together.

C5 If there are s and s′ reply hexagonal-paths with the
same value of p, then s hexagonal-paths with the greater
value of b are merged together.

C6 If there are s and s′ reply hexagonal-paths with the same
value of s, then s hexagonal-paths with the greater value
of b are merged together.

C7 If there are s and s′ reply hexagonal-paths with the same
value of b, then s hexagonal-paths with the greater value
of s are merged together.

C8 If there are s and s′ reply hexagonal-paths with the dif-
ferent value of p, b, and s, then s hexagonal-paths with
the greater value of b are merged together.

For example, Figs. 14(a) and 14(b) are instances of
the case C3, Figs. 14(b) and 14(c) are instances of case
C7, Figs. 14(c) and 14(d) are instances of case C2, and
Figs. 14(b) and 14(d) are instances of case C6.

Fig. 14 Merging examples

3.3 Phase 3: hexagonal-tree maintenance

Given a hexagonal path [α1, α2, α3, . . . , αi](b) denote a
hexagonal-path of a constructed hexagonal-tree, where αi

is a uni-path
−−→
BiB

′
i , or a hexagonal-block

[
Bi

Xi

X′
i

Yi

Y ′
i

B ′
i

]
,
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or

⎡
⎢⎢⎣

X̂i Ŷi

Xi Yi B ′
i

Bi X̂′
i Ŷ ′

i

X′
i Y ′

i

⎤
⎥⎥⎦

or

⎡
⎢⎢⎣

Xi Yi

Bi X̂i Ŷi

X′
i Y ′

i B ′
i

X̂′
i Ŷ ′

i

⎤
⎥⎥⎦ .

Without loss of generality, let
[
Bi

Xi

X′
i

Yi

Y ′
i
B ′

i

]
be the ith

hexagonal-block, and

⎡
⎢⎢⎣

X̂i Ŷi

Xi Yi B ′
i

Bi X̂′
i Ŷ ′

i

X′
i Y ′

i

⎤
⎥⎥⎦

or

⎡
⎢⎢⎣

Xi Yi

Bi X̂i Ŷi

X′
i Y ′

i B ′
i

X̂′
i Ŷ ′

i

⎤
⎥⎥⎦

be the ith hexagonal-twin. If sub-path [Bi X
′
i Y

′
i B ′

i] in[
Bi

Xi

X′
i

Yi

Y ′
i

B ′
i

]
fails, then a backup path [Bi X

′′
i Y ′′

i B ′
i] in[

Bi
Xi

X′′
i

Yi

Y ′′
i

B ′
i

]
is constructed to replace with the failed sub-

path [Bi X
′
i Y

′
i B ′

i]. If sub-path [Bi X
′
i Y

′
i X̂′

i] or [Yi X̂
′
i Ŷ

′
i B ′

i]
fails in
⎡
⎢⎢⎣

X̂i Ŷi

Xi Yi B ′
i

Bi X̂′
i Ŷ ′

i

X′
i Y ′

i

⎤
⎥⎥⎦ ,

then a backup path [Bi X
′′
i Y ′′

i X̂′
i] or [Yi X̂

′′
i Ŷ ′′

i B ′
i] is con-

structed to replace with the failed sub-path [Bi X
′
i Y

′
i X̂′

i]
or [Yi X̂

′
i Ŷ

′
i B ′

i]. In addition, if sub-path [Bi X
′
i Y

′
i X̂i] or

[Y ′
i X̂′

i Ŷ
′
i B ′

i] fails in

⎡
⎢⎢⎣

Xi Yi

Bi X̂i Ŷi

X′
i Y ′

i B ′
i

X̂′
i Ŷ ′

i

⎤
⎥⎥⎦ ,

then we try to search for a backup path [Bi X
′′
i Y ′′

i X̂i] or
[Y ′

i X̂′′
i Ŷ ′′

i B ′
i] to replace with the failed sub-path

[Bi X
′
i Y

′
i X̂i] or [Y ′

i X̂′
i Ŷ

′
i B ′

i].

3.4 The algorithm complexity

Before discussing the time complexity of constructing the
hexagonal tree, the time cost and complexity of a hexagonal-
block, a hexagonal-twin, and a hexagonal-path are given as
follows.

Lemma 2 The time cost of constructing a hexagonal-block
is Tblock = 4Tα.

Proof Given a hexagonal-block
[
A

B
C

D
E

F

]
, and let Tα de-

note the time cost of sending a packet between a link
−→
XY

in the hexagonal-block. Node A broadcasts the hexagonal-
block request packet to nodes B , C simultaneously within
Tα. Then, nodes B and C simultaneously send hexagonal-
block request packets to nodes D and E, respectively within
Tα . To present the collision, nodes D and E transmit
hexagonal-block request packets to node F in different time
slots. Let Tblock denote the time cost of a hexagonal-block.
Therefore, the time cost of constructing a hexagonal-block
is Tblock = 4Tα. �

Lemma 3 The time cost of constructing a hexagonal-twin
is Ttwin = 6Tα.

Proof For a hexagonal-twin

⎡
⎢⎢⎣

G H

B D J

A F I

C E

⎤
⎥⎥⎦ ,

which is constructed by two hexagonal-blocks
[
A

B
C

D
E

F

]

and
[
D

G
F

H
I

J

]
. Based on result from Lemma 2, nodes

G and F received the hexagonal-twin request packet from
node D at time 3Tα, then forward the packet to node H ,
while node H received the packet at time 4Tα. To avoid the
collision, node J received packets from nodes H and I at
5Tα and 6Tα, respectively. Let Ttwin denote the time cost of
a hexagonal-twin. Therefore, the time cost of constructing a
hexagonal-twin is Ttwin = 6Tα. �

Lemma 4 The time complexity of constructing a hexagonal-
path is Tpath = O(5mTα) if m = p + q and Npath =
(5p + 1) + (9q + 1), where Npath is he total number of
nodes in a hexagonal-path.

Proof For the worst case, we assumed that a hexagonal-
path consists of m segments, where these m segments con-
tain p hexagonal-blocks and q hexagonal-twins, m = p+q ,
as shown in Fig. 18(a). This is because that the time cost
of a hexagonal-block and a hexagonal-twin are larger than
that of a uni-path. Let Npath denote the node number of a
hexagonal-path, where Npath = (5p + 1) + (9q + 1),5 and
9 are node number of a hexagonal-block and a hexagonal-
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twin, respectively. Therefore, there are m + 1 various cases
as follows:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

case 1: m hexagonal-blocks and 0 hexagonal-twin
case 2: m − 1 hexagonal-blocks and 1 hexagonal-twin
...

case m: 1 hexagonal-blocks and m − 1 hexagonal-twin
case m + 1: 0 hexagonal-blocks and m hexagonal-twin

Let Tpath denote the time cost of hexagonal-path, which
is calculated as follows.

Tpath =
(0+m)(m+1)

2 Tblock + (m+0)(m+1)
2 Ttwin

m + 1

=
(0+m)(m+1)

2 × 4Tα + (m+0)(m+1)
2 × 6Tα

m + 1
= 5mTα,

where Tblock = 4Tα , Ttwin = 6Tα . Therefore, the average
time complexity of constructing a hexagonal-path is Tpath =
O(5mTα). �

Lemma 5 The time complexity of constructing a hexago-
nal-tree is O(2k1(7 + 5m)Tα) ≤ Ttree ≤ O(7Tαk2 +
5mTα(k2 − 1)), where k1 = log2(

Ntree
Npath+13 + 1) and k2 =

Ntree+Npath
Npath+13 .

Proof Based on Lemma 3, and consider a hexagonal-branch

⎡
⎢⎢⎢⎢⎣

G H

B D J

A F I

C E M
K L

⎤
⎥⎥⎥⎥⎦

,

which is constructed by hexagonal-blocks
[
A

B

C

D

E
F

]
,

[
D

G

F

H

I
J

]
,

and

[
E

F

K

I

L
M

]
.

It is easily to develop the time cost of constructing a
hexagonal-branch is Tbranch = 7Tα , by adding nodes K,L,

and M.

To construct a hexagonal-tree, the hexagonal-tree is a
complete binary tree or a skew tree for the best and worst
cases, respectively. Let Ntree be the total number of nodes
of the tree and the node number in a hexagonal-branch is
13. In a hexagonal-tree, we assumed that any hexagonal-
path between two hexagonal-branches has at most m seg-
ments, where Npath is the node number of the hexagonal-
path. For the best case, a k1-level complete binary tree can
be constructed, where k1 = log2(

Ntree
Npath+13 + 1) and Ntree =

13 × (2k1 − 1) + (2k1 − 1) × Npath. Example is given in

Fig. 18(b). Let Ttree denote the time cost of hexagonal-
branch and hexagonal-tree. The time cost of a k1-level com-
plete binary hexagonal-tree is

2k1 × (Tbranch + Tpath) = 2k1 × (7 + 5m)Tα ≤ Ttree.

For the worst case, the hexagonal tree is a k2-level skew

tree as shown in Fig. 18(c), where k2 = Ntree+Npath
Npath+13 and

Ntree = 13 × k2 + (k2 − 1) × Npath. The time cost of the
hexagonal-tree is

Ttree ≤ k2 × Tbranch + (k2 − 1) × Tpath

= 7Tαk2 + 5mTα(k2 − 1).

Therefore, the time complexity of constructing a hexagonal-
tree is O(2k1(7 + 5m)Tα) ≤ Ttree ≤ O(7Tαk2 +
5mTα(k2 − 1)). �

4 Experimental results

To examine the effectiveness of our approach, two well-
known multicast routing protocols, AODV [6] and ODMRP
[2], are mainly compared with our approach. Observe that
AODV and ODMRP do not offer the QoS capability. In ad-
dition, Tseng designed a TDMA-based QoS uni-path rout-
ing protocol in [14]. To make a fair comparison, we offer the
QoS-extension AODV [6] and ODMRP [2] such that each
path in AODV [6] and ODMRP [2] protocols adopts Tseng’s
TDMA-based QoS uni-path routing [14], where MAC sub-
layer is adopted the TDMA channel model. AODV [6]
and ODMRP [2] are well known multicast routing pro-
tocols. Therefore, AODV(+Tseng) and ODMRP(+Tseng)
are QoS multicast routing protocol, where each time slot
reservation of link in AODV [6] and ODMRP [2] adopts
Tseng’s TDMA-based QoS uni-path routing result [14]. All
these protocols are mainly implemented using the NCTUns
2.0 simulator and emulator [3]. In this simulation, these
two integrated results are denoted as AODV(+Tseng) and
ODMRP(+Tseng), respectively. The scenario simulates a
1000 × 1000 m2 area. In our simulation, every result is the
average of 1000 runs for the same setup environment. To
express the confidence level of our simulator, the simulation
parameters in the simulator are given as follows:

• The number of mobile hosts ranges from 20 to 50.
• The number of time slots of the data frame is assumed to

be 16 slots.
• The bandwidth requirements are two, four, six and eight

time slots.
• The mobility ranges from 10 to 40 km/h.
• The message length ranges from 1 to 4 Mbits.
• The radio transmission range is 200 m.
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Fig. 15 Performance of success
rate vs. effects of (a) the number
of hosts, (b) bandwidth
requirement, (c) mobility, and
(d) number of destinations

• The transmission rate is 5 Mbit/s.
• The duration time of each time slot of a time frame is

assumed to be 5 ms, and the duration time of a control
slot is 0.1 ms.

• The source and destination are selected randomly.
• A packet is dropped if the packet stays in a node in excess

of the maximal queuing delay time, which is set to four
frame lengths (328 ms).

• Once a QoS request is successful, time slots are reserved
for all subsequent packets. The reservation is released
when either the data transmission process is finished or
the link is broken.

The performance metrics to be observed are:

• Success rate (SR). The value of successful QoS route re-
quests divided by the total number of QoS route requests
from source to destination.

• Overhead (OH). The number of transmitted packets, in-
cluding the control and data packets.

• Latency (LT). The interval from the time the multicast is
initiated to the time the last host receives its multicasting.

It is worth mentioning that an efficient QoS routing pro-
tocol is achieved by with a high success rate, high through-
put, and low latency. In the following, we illustrate the per-
formance of success rate (SR), overhead (OH), and latency
(LT) from several perspectives.

4.1 Success rate (SR)

The performance metric SR means that the ratio of success-
ful QoS route requests to the total number of QoS route re-
quests. Figure 15 shows the performance results of success
rate (SR) vs. (a) the number of mobile hosts, (b) network
bandwidth, (c) mobility, and (d) number of destinations. We
have observed that our approach has the better success rate
under the situations of high number of hosts, the low band-
width requirement, the low mobility, and the less number of
destination nodes. The performance of SR is discussed as
follows.

1(a) Effects of the number of hosts. In this simulation,
the tuple of parameters (number of mobile hosts, net-
work bandwidth, mobility, number of destinations) =
((20, 30, 40, 50), 2, 10 km/h, 2). First, to compare
the change rate of curve lines along different para-
meters with the other schemes, AODV(+Tseng) and
ODMRP(+Tseng), the change rate of our protocol is
increasing speedily than that of the other schemes,
as shown in Fig. 15(a). This means that our protocol
achieves more success rate by using less cost than that
of the other schemes. This result also indicates that the
greater the number of hosts is, the higher the success
rate is obtained. Second, the bar charts of Fig. 15(a)
show that our protocol achieves a better success rate
than that of the other schemes under various numbers
of hosts.
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Fig. 16 Performance of
overhead vs. effect of (a) the
number of hosts, (b) bandwidth
requirement, (c) mobility, and
(d) number of destinations

1(b) Effects of bandwidth requirement. In this simulation,
the tuple of parameters (number of mobile hosts, net-
work bandwidth, mobility, number of destinations) =
(20, (2, 4, 6, 8), 10 km/h, 2). To compare the change
rate of curve lines along different parameters with the
other schemes, our protocol is decreasing slowly than
that of the other schemes, as shown in Fig. 15(b).
This means that our method achieves more success rate
by even using more bandwidth than that of the other
schemes. This result also indicates that the higher the
bandwidth requirement is, the lower the success rate
is obtained. The bar charts of Fig. 15(b) show that
our protocol achieves better success rates than that of
the other schemes under various bandwidth require-
ments.

1(c) Effects of mobility. In this simulation, the tuple of
parameters (number of mobile hosts, network band-
width, mobility, number of destinations) = (20, 2, (10,
20, 30, 40) km/h, 2). The curve lines of Fig. 15(c)
show that the higher the mobility is, the lower the
success rate will be. The bar charts of Fig. 15(c)
show that our protocol achieves better success rates
than that of the other schemes under various mobili-
ties.

1(d) Effects of the number of destinations. In this sim-
ulation, the tuple of parameters (number of mobile
hosts, network bandwidth, mobility, number of des-
tinations) = (20, 2, 10 km/h, (2, 3, 4, 5)). To com-

pare the change rate of curve lines along different pa-
rameters with the other schemes, our method is de-
creasing slowly than that of the other schemes, as
shown in Fig. 15(d). This means that our protocol
achieves more success rate by even existing more num-
ber of destinations than that of the other schemes.
This result also indicates that the greater the num-
ber of destinations is, the lower the success rate is
obtained. The bar charts of Fig. 15(d) show that our
protocol achieves better success rates than that of
the other schemes under various numbers of destina-
tions.

The above results indicate that our protocol achieves a
better success rate than those of the other schemes under
various situations.

4.2 Overhead (OH)

The performance metric OH contains the number of trans-
mitted control packets and data packets. Figure 16 illus-
trates the performance results of overhead vs. (a) the number
of mobile hosts, (b) network bandwidth, (c) mobility, and
(d) number of destinations. We have observed that our ap-
proach has the higher OH under the different situations of
the number of hosts, the bandwidth requirement, the mobil-
ity, and the number of destination nodes. Our protocol wins
the higher success rate and requires more control packets
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than that of the other schemes in each transmission. The rea-
son is that extra control packets need to construct the multi-
path in our approach. The performance of OH is discussed
as follows.

2(a) Effects of the number of hosts. In this simulation,
the tuple of parameters (number of mobile hosts, net-
work bandwidth, mobility, number of destinations) =
((20, 30, 40, 50), 2, 20 km/h, 2). The curve lines of
Fig. 16(a) show that the greater the number of hosts is,
the higher the OH will be. The reason is the more the
number of hosts used, the more the transmitted paths
and control packets needed. The bar chars of Fig. 16(a)
show that our protocol achieves a higher OH than that
of the other schemes under various numbers of hosts.

2(b) Effects of the bandwidth requirement. In this simula-
tion, the tuple of parameters (number of mobile hosts,
network bandwidth, mobility, number of destinations)
= (20, (2, 4, 6, 8), 20 km/h, 2). The curve lines of
Fig. 16(b) show that the OH is almost constant inde-
pendently of the bandwidth requirement. The bar chars
of Fig. 16(b) show that our protocol achieves a higher
OH than that of the other schemes under various band-
width requirements.

2(c) Effects of mobility. In this simulation, the tuple of pa-
rameters (number of mobile hosts, network bandwidth,
mobility, number of destinations) = (20, 2, (10, 20, 30,
40) km/h, 2). The curve lines of Fig. 16(c) show that
the higher the mobility is, the higher the number of
connected hosts will be. The more the number of hosts
used, the more the transmitted paths and control pack-
ets needed. The bar chars of Fig. 16(c) show that our
protocol achieves a higher OH than that of the other
schemes under various mobilities.

2(d) Effects of number of destinations. In this simulation,
the tuple of parameters (number of mobile hosts, net-
work bandwidth, mobility, number of destinations)
= (20, 2, 20 km/h, (2, 3, 4, 5)). The curve lines
of Fig. 16(d) show that the greater the number of
destinations is, the higher the OH will be. The rea-
son is the more the destinations added, the more the
control packets needed. The bar chars of Fig. 16(d)
show that our protocol achieves a higher OH than that
of the other schemes under various numbers of desti-
nations.

The above results indicate that our protocol achieves a
higher OH than those of the other schemes under various
situations. In particular, our protocol requires a little over-
head value than that of the other schemes in this simulation.
This is because that extra control packet of our approach is
needed to construct the multi-path. However, our approach
uses additional control packets to achieve the purpose of
higher success rate, higher throughput, and lower latency.

4.3 Latency (LT)

The performance metric LT means that the interval from the
time the multicast is initiated to the time the last host re-
ceives its multicasting. Figure 17 illustrates the performance
results of latency (LT) vs. (a) the number of mobile hosts, (b)
network bandwidth, (c) mobility, (d) number of destinations,
and (e) message length. We have observed that our approach
has the low latency under the different situations of the less
number of hosts, the high bandwidth requirement, the low
mobility, the greater number of destination nodes, and the
greater number of message length. The performance of la-
tency is discussed as follows.

3(a) Effects of the number of hosts. In this simulation,
the tuple of parameters (number of mobile hosts, net-
work bandwidth, mobility, number of destinations) =
((20, 30, 40, 50), 2, 20 km/h, 2). The curve lines of
Fig. 17(a) show that the greater the number of hosts
is, the higher the latency will be. The bar chars of
Fig. 17(a) show that our protocol achieves a better
(lower) latency than that of the other schemes under
various numbers of hosts.

3(b) Effects of the bandwidth requirement. In this simula-
tion, the tuple of parameters (number of mobile hosts,
network bandwidth, mobility, number of destinations)
= (20, (2, 4, 6, 8), 20 km/h, 2). The curve lines of
Fig. 17(b) show that the higher the bandwidth require-
ment is, the lower the latency will be. The bar chars
of Fig. 17(b) show that our protocol achieves a better
(lower) latency than that of the other schemes under
various bandwidth requirements.

3(c) Effects of mobility. In this simulation, the tuple of pa-
rameters (number of mobile hosts, network bandwidth,
mobility, number of destinations) = (20, 2, (10, 20, 30,
40) km/h, 2). The curve lines of Fig. 17(c) show that
the higher the mobility is, the higher the latency will
be. The bar chars of Fig. 17(c) show that our protocol
achieves a better (lower) latency than that of the other
schemes under various mobilities.

3(d) Effects of the number of destinations. In this simula-
tion, the tuple of parameters (number of mobile hosts,
network bandwidth, mobility, number of destinations)
= (20, 2, 20 km/h, (2, 3, 4, 5)). The curve lines of
Fig. 17(d) show that the greater the number of destina-
tions is, the higher the latency will be. The bar chars
of Fig. 17(d) show that our protocol achieves a better
(lower) latency than that of the other schemes under
various numbers of destinations.

3(e) Effects of message length. To observe the influences
of message length, we add a situation simulation to
this metric. In this simulation, the tuple of parame-
ters (number of mobile hosts, network bandwidth,
mobility, number of destinations, message length) =



18 Y.-S. Chen et al.

Fig. 17 Performance of latency
vs. the effect of (a) the number
of hosts, (b) bandwidth
requirement, (c) mobility, (d)
number of destinations, and (e)
message length

(20, 2, 20 km/h, 2, (1, 2, 3, 4) Mbits). The curve lines
of Fig. 17(e) show that the greater the value of message
length is, the higher the latency will be. The bar chars
of Fig. 17(e) show that our protocol achieves a better
(lower) latency than that of the other schemes under
various value of message length.

The above results indicate that our protocol achieves
a better (lower) latency than those of the other schemes
under various situations. As a summary, all above met-
rics indicate that our protocol achieves higher success rate,
higher throughput, and lower latency than those of the other
schemes.

5 Conclusions

This paper presents a new TDMA-based QoS multicast
routing protocol for a wireless mobile ad hoc network.
This study builds a new multicast tree structure, namely
a hexagonal-tree, to serve as the QoS multicasting tree.
To the power-saving issue, the MAC sub-layer in this pa-
per adopts the simple TDMA channel model. Both of the
hidden-terminal and exposed-terminal problems are taken
into consideration in order to possibly exploit the time-slot
reuse capability during construction of the hexagonal-tree.
In this paper, the proposed hexagonal-based scheme indeed
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Fig. 18 Example of calculating
the time complexity of (a) a
hexagonal-path, (b) a complete
hexagonal-tree, and (c) a skew
hexagonal-tree

offers higher success rates for constructing the QoS multi-
cast tree. This improves the success rate by means of two-
path routing. Performance analysis results demonstrate the
achievement of efficient QoS multicasting. In addition, the
efficiency of wireless sensor networks may gain from this
proposed concept, i.e., wireless sensor network can be an
additional use case.
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